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Summary
This paper explores the value of low-statistical-dependence risk premia building 
blocks and their role in improving investment outcomes. Low statistical 
dependence is frequently underestimated both as a mechanism for controlling 
risk and as a potential source of additional return. While the underlying 
mathematics of volatility, correlation and portfolio outcomes are well established 
and relatively well known, it is frequently the case that investors lack a visceral 
intuition for just how powerful these statistical features are in contributing to 
desirable investment outcomes.
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Risk Premia Investing

Introduction 
Well-defined risk premia,1 in addition to providing a rich diversity of 
relatively robust sources of return, provide a real opportunity for 
diversification due to their typically low statistical dependence. The 
value of low statistical dependence is frequently underestimated, 
both as a mechanism for controlling risk and, more interestingly, as 
a potential source of additional return. While the underlying 
mathematics of volatility, correlation and portfolio outcomes are well 
established and relatively well known, it is frequently the case that 
investors lack a visceral intuition for just how powerful these 
statistical features are in contributing to investment outcomes. It is 
likely to be the case that even experienced investors fail to pay 
heed to the basics and subsequently produce severely under-
diversified portfolios.

Example Pension Fund Allocation 
According to a publication by JPMorgan, the typical U.S. public 
pension plan has approximately 52% of its assets in equities, 28% 
in fixed income, 5% in real estate and 14% in alternatives.2 In order 
to analyze the merits of this typical allocation, we have attempted to 
realistically design a proxy for it by selecting a broad collection of 
related indices as depicted in Exhibit 1 below. Based on a typical 
institutional asset allocation, the equity exposure was created with 
the following style and regional allocations: U.S. large cap (21%), 
U.S. small cap (5%), non-U.S. developed equities (21%) and 
emerging markets equity (5%). Likewise, the fixed income exposure 
was further broken down as follows:  short-duration fixed income 
(3%), core fixed income (20%) and TIPS (5%).  Due to a lack of an 
appropriate passive benchmark, the Russell 2000 Index 
represented the private equity exposure with a quarterly lag.

1 �For a more detailed explanation of risk premia, that is, compensation for assumed risk, please see our paper titled “Introduction to Risk Premia Investing: Definitions 
and Examples.”

2 �Merthaler, Karl and Zhang, Helen. “Public Pension Funds: Asset Allocation Strategies,” JPMorgan Investment Analytics and Consulting, June 2010.

Asset Class Sub-Asset Class Proxy Index Allocation

Equities 52%

U.S. Large Cap
U.S. Small Cap
International 
Emerging Markets

S&P 500®

Russell 2000®

MSCI World ex USA
MSCI Emerging Markets

21%
5%
21%
5%

Fixed Income 28%

Short-Term Bonds
Intermediate-Term Bonds
TIPS Bonds

Bloomberg Barclays 1-3 Year
Bloomberg Barclays US Aggregate
Bloomberg Barclays US TIPS

3%
20%
5%

Real Estate 5%

Private Real Estate NCREIF Property (NPI) 5%

Alternatives 14%

Hedge Funds
Private Equity

HFRI Fund Weighted
Russell 2000 1Q lagged

5%
9%

Cash 1%

Cash FTSE 3-Month U.S. Treasury Bill 1%

The portfolio is hypothetical and used for illustrative purposes only.

Exhibit 1: Example Pension Fund Allocation
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Principal Component Analysis
Just how diversified is this example portfolio based on a typical 
pension fund allocation? From a purely qualitative perspective, it 
appears to be a sensible allocation. It is diversified across asset 
classes, geographies, market caps, maturities and even includes a 
healthy dose of alternatives. A more rigorous inspection, however, 
reveals a very different reality. To assist in a more in-depth inspection, 
we have employed a quantitative technique known as Principal 
Component Analysis (PCA). PCA dissects large blocks of data into  
a more compact set of independent blocks. It divides the data into  
an ordered (by contribution to variance) set of independent views to 
provide an objective understanding of the number of contributing 
sources of variance and their relative importance.

Exhibit 2 presents the results of this analysis. As one can see, a 
U.S. pension fund based on this typical allocation would be 
surprisingly undiversified. Approximately 80% of the portfolio 
variance was caused by a single risk factor. The first two factors 
explained 90% of the portfolio risk. 

Exhibit 2: Principal Component Analysis

This PCA analysis in Exhibit 2 provides two key insights. First, this 
portfolio is diversified in name only. From an objective standpoint, 
there is really only one significant source of risk. While PCA analysis 
does not provide for a direct identification (name) of the underlying 
source of variance, we infer that in this case, the underlying source 
of portfolio risk is equity exposure and the other securities in the 
portfolio are, broadly speaking, subject to the same underlying 
pressures. For example, the HFRI Fund Weighted Index has 
typically been highly correlated with the broad U.S. equity markets 
despite the addition of a wide variety of strategies and asset classes. 

Second, this PCA analysis reveals that there has been a significant 
failure to define and access a broadly diversified set of independent 
risk factor exposures, i.e., risk premia. 

Metaphorically speaking, this is akin to mismanaging an insurance 
company’s portfolio of policies. Consider two cases. First, imagine 
a collection of 1,000 fire insurance policies issued to 1,000 
separate, unrelated homeowners. The insurance company is 
receiving a premium from each of the insured households for 
accepting the risk that their house might burn down. Assume that 
each house is completely isolated in the middle of a large concrete 
expanse. Further assume that there is a 0.001 (1/1,000) probability 
in any year of someone from any given home accidentally triggering 
a fire that destroys it. The portfolio of risk premia that the insurance 
company has assembled in this first case would be well structured 
due to its high degree of diversification. Provided that there are no 
other overlapping factors, the probability (p) of any house burning 
down in any given year would be 0.001, and the probability of it not 
burning down in any given year due to its assumed independence 
is (1 – p) = (1 – 0.001) = 0.999; essentially, no one house fire can 
trigger a fire in any other given home. 

In the second case, this same group of families and their 
associated insurance policies have been transferred to a very 
compact neighborhood consisting of 1,000 quaint, wooden 
Victorian homes. In this situation, one miscue while preparing a 
BLT sandwich could not only cause a single home to burn down, it 
could also cause the entire compact wooden neighborhood to go 
up in flames as well. In this situation, the probability of not having to 
pay out on any single house has now decreased dramatically and 
is, in fact, due to the high degree of correlation associated with 
such a compact neighborhood, equal to the probability that none of 
them has a fire that year. The probability of not having a payout on 
any single home is calculated as: (1 – p)n = (1 – 0.001)1000 = 0.37.  
In short, there is approximately a 63% (i.e., 1 - 0.37) chance the 
insurance company will have to pay out on any single home. Due to 
the assumed high degree of dependence, that figure is now equal 
to the probability of having to pay out on every single home in the 
neighborhood! Goodbye, insurance company.

 

Analysis of the hypothetical portfolio proxied by indices representing the sub-
asset classes depicted in Exhibit 1 is for the period 6/30/98 through 6/30/18. 
The analysis above is based on a hypothetical portfolio and used for illustrative 
purposes only. 
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Risk Premia Investing

Basic Portfolio Math
In the case of an investment portfolio, the math is more complicated, but the results can be just as striking. 

Equation 1, presented below, is a standard representation of the mathematical reality faced by investors. Reading from left to right, it 
states that portfolio risk, or variance, is inversely related to the number of assets in the portfolio, positively related to the average 
riskiness of the individual assets and positively related to their degree of statistical dependence.

Equation 1 

Noting that Cov (ri ,rj) = ρσi σj, i.e., the 
covariance of the returns of two assets is 
equal to the correlation of the two assets 
multiplied by their individual variances, we 
obtain Equation 2.

Equation 2

Setting all the asset variances to a single 
value, i.e., σi = σj, we obtain Equation 3. 
This is akin to assuming all your 
investments have the same basic risk. 
This assumption is clearly unrealistic, but 
it simplifies the math, and the point being 
made is unaffected.

Equation 3 

Equation 3, which is very similar to 
Equation 1, states that portfolio risk is 
inversely related to the number of assets 
in the portfolio, positively related to the 
assumed individual asset variances and 
positively associated with the average 
correlation of each of the assets. 

Impact of Correlation
Armed with Equation 3 from above, we can now “plug and play,” 
and perform a thought experiment. The purpose of this thought 
experiment is to develop a deeper visceral understanding of just 
how powerful an ally low-correlated risk premia can be to 
an investor. 

Exhibit 3, presented below, summarizes the thought experiment. 
Assume we have created six portfolios. Each portfolio consists of 

a collection of individual assets, with each asset having an 
expected annualized return of 10% and an expected annualized 
volatility of 10%. The first five portfolios contain assets that have an 
assumed correlation (within their respective portfolios) of 0.5. The 
sixth portfolio contains assets with an assumed correlation of 0.0. 
The number of assets in each portfolio is shown below.

Exhibit 3: Impact of Correlation

These portfolios are hypothetical and used for illustrative purposes only.

Portfolio 1

5 Assets

Portfolio 2

10 Assets

Portfolio 3

20 Assets

Portfolio 4

30 Assets

Portfolio 5

50 Assets

Portfolio 6

3 Assets

0.5 correlation
among assets in portfolio

0.0 correlation
among assets in portfolio

2 1 2 1
p n n= +σ σ (1 – ) Cov (ri  ,rj )

2 1 2 1
p n n= +σ σ (1 – )ρσ 22 1 2 1

p n n= +σ σ (1 – ) ρProd (σ
i  σ j

)
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The question is, Which portfolio is better? To answer this question, 
we make use of Equation 3 to produce the output in Exhibit 4. The 
curved line shows how the annualized volatility decreases as we 
include an ever-larger number of assets in a given portfolio. The 
curve is derived by inserting the assumed values for correlation, 
volatility and the number of assets.  

Exhibit 4: The Relationship Between Volatility, 
Correlation and the Number of Assets

 
From the curved line in Exhibit 4, we see that as the number of 
assets in the portfolio increases, the volatility decreases. It 
decreases fairly rapidly for the first 10 assets, but after that it 
doesn’t really reduce the volatility significantly. In fact, an infinite 
number of 0.5-correlated assets won’t cause the volatility of the 
overall portfolio to drop below approximately 7.1%.

In contrast, the volatility of the three-asset Portfolio 6 is only 5.77%, 
which is almost 20% lower than a portfolio consisting of an infinite 
number of 0.5-correlated assets. The ability to invest in low-
correlated assets sourced from statistically independent risk premia 
can provide a significant theoretical advantage when building 
a portfolio. 

This is not the end of the story, however. The three-asset portfolio is 
not only less volatile, but it provides a higher geometric mean return 
as well, also known as growth rate of wealth, as shown in Exhibit 5. 

Exhibit 5: Geometric Mean Return

This occurs  because, as we see from Equation 4 below, there is a 
direct analytical linkage between the growth rate of wealth r, the 
arithmetic mean return x– and volatility σ2.

Equation 4

The connection is that the growth rate of wealth is approximately 
equal to the arithmetic mean return minus a volatility correction. All 
else being equal, the lower the volatility of a portfolio, the higher the 
growth rate of wealth over time. As a result, the ability to invest in 
low-correlated assets, such as those based on low-correlated risk 
premia, may not only assist in controlling risk but also may 
contribute to higher returns.

The Moral of the Story
First, most portfolios invested in multiple asset classes may be 
diversified in name only, which may result in risk exposure 
concentrated in one or two risk factors. Second, diversification 
based on statistically independent risks can be effective for both 
reducing risk and enhancing returns. Thus, building a portfolio of 
low-correlated, well-defined, independent risk premia can 
potentially enhance performance outcomes to an extent that goes 
beyond many investors’ intuitive expectations. 

These portfolios are hypothetical and used for illustrative purposes only.
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For more information, please visit janushenderson.com.

Risk Premia Investing
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